Recitation 5

September 24, 2015

Problems

Problem 1. W is not a subspace of \mathbb{R}^3 since it's not closed under addition: take vectors $\begin{vmatrix} \tilde{0} \\ 1 \end{vmatrix}$ and $\begin{vmatrix} \tilde{1} \\ 1 \end{vmatrix}$.

They are in the set W, but their sum $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is no longer in W.

Problem 2. This set V is exactly the null space of the matrix $A = [1 \ 1 \ 1]$. Indeed, A defines a linear From 2. This set f is characterized at $x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to Ax = a + b + c. By Theorem 2 in Section 4.2 of the textbook, null space of any matrix is a subspace. Alternatively, you can just directly check that Vsatisfies the two axioms of being a subspace.

Problem 3. Put the vectors into a 4×4 matrix A, do row reduction. You will see there are only 3 pivotal columns (and rows). Not every column is pivotal \Rightarrow vectors are dependent. Not every row is pivotal, so the vectors **do not span** \mathbb{R}^4 .

The first three columns are pivotal, so $\{v_1, v_2, v_3\}$ for a basis of $Col(A) = Span(v_1, v_2, v_3, v_4)$.

Problem 4. Row reduce the matrix. There are three pivots. So every row and every column is pivotal. Therefore columns do form a basis of \mathbb{R}^3 , and $Col(A) = \mathbb{R}^3$. Matrix A is invertible, and its inverse is $A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0.6 & 0.4 & -0.4 \\ -0.2 & -0.3 & 0.8 \end{bmatrix}$

Problem 5. Row reduce, the first two columns are pivotal, so they for a basis for Col(A). So $\{ \begin{vmatrix} 1 \\ 3 \end{vmatrix}, \begin{vmatrix} 2 \\ 7 \end{vmatrix} \}$ is a basis of Col(A). To find a basis for Nul(A), we need to solve system of equations Ax = 0. Row reducing, x_3 is a free variable, $x_2 = -4x_3$ and $x_1 = 9x_3$. So the general solution is of the form $\begin{bmatrix} 9x_3 \\ -4x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 9 \\ -4 \\ 1 \end{bmatrix}$. So the vector $\begin{bmatrix} 9 \\ -4 \\ 1 \end{bmatrix}$ is a basis for Nul(A).

Problem 6. Vector $[1] \in \mathbb{R}$ is a basis for Col(A). Solving the system Ax = 0, variables x_2, x_3 are free, and $x_1 = -3x_2 + x_3$. So general solution is the form $\begin{bmatrix} -3x_2 + x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. So vectors $\begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ form a basis for Nul(A).

Problem 7. Put vectors into matrix, row reduce, there are two pivots. Every column and row is pivotal so the two vectors form a basis of \mathbb{R}^2 . To find coordinates of $x = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ we need to solve the system $\begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} y = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. The solution is $y = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. **Problem 8.** Since V = Nul(A) for $A = \begin{bmatrix} 1 & 1 \\ -1 \end{bmatrix}$ we are again looking for a basis of null-space. Solving

$$Ax = 0$$
 we find a basis. For example, $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ will form a basis.

To find the coordinates $[x]_{\mathcal{B}}$ of the vector $x = \begin{bmatrix} -3\\4\\-1 \end{bmatrix}$ is this basis, we need to solve the system

 $\begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} y = \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix}$. The solution is $y = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ and has two entries, which shouldn't be surprising, since there are two vectors in the basis.

Problem 9. The transformation T sends a polynomial $ax^3 + bx^2 + cx + d$ to the polynomial $3ax^2 + 2bx + c$. The latter polynomial is zero if and only if a = b = c = 0. So the kernel of T consists of all polynomials $ax^3 + bx^2 + cx + d$ having a = b = c = 0, i.e. $ker(T) = \{d, d \in \mathbb{R}\} = Span(1)$ is the space of constant polynomials.

Problem 10.

- 1. False.
- 2. False.
- 3. True.
- 4. True.
- 5. False.
- 6. False.

Problem 11. Expressions $b = x_1v_1 + x_2v_2 + x_3v_3$ correspond to solutions (x_1, x_2, x_3) of the system of equations Ax = b with $A = (v_1|v_2|v_3)$. Since v_1, v_2, v_3 are dependent, not every column of A is pivotal, and so there are free variables (we know the system Ax = b is consistent since $b \in Span(v_1, v_2, v_3)$ by assumption). Free variables imply non-unique solution. So b can be expressed as $b = x_1v_1 + x_2v_2 + x_3v_3$ in more than one way.